Cleavage of the Imino Bonds of Validoxylamine A Derivatives $\qquad \qquad \text{with N-Bromosuccinimide} \\$

Seiichiro OGAWA,* Yasunobu MIYAMOTO, and Akihiro NAKAJIMA

Department of Applied Chemistry, Faculty of Science and Technology,

Keio University, Hiyoshi, Yokohama 223

Reaction of validoxylamine A derivatives with \underline{N} -bromosuccinimide in aqueous $\underline{N},\underline{N}$ -dimethylformamide resulted in a cleavage of the imino bonds to give rise to synthetically useful protected derivatives of (+)-validamine and valienamine, and the cyclohexanone and -hexenone derivatives.

During the course of synthetic studies on validamycins $^{1-3}$) and pseudo-oligosaccharidic alpha-amylase inhibitors, 4 , 5) we needed optically active synthons useful for construction of such pseudo-oligosaccharides linked by way of imino bonds.

Hydrogenolysis of validoxylamine A (1) produced (+)-validamine (8). Although it has been reported that valienamine (5) is obtained by microbial degradation of validamycin A or 1 with <u>Pseudomonas denitrificans</u>, a chemical degradation to give 5 has never been carried out successfully so far. We report herein a cleavage of the C-N bond of 1 with <u>N</u>-bromosuccinimide (NBS) in aqueous $\underline{N}, \underline{N}$ -dimethylformamide (DMF), conceivably \underline{via} \underline{N} -bromination, giving rise to 5 and 8, and hydroxy(hydroxymethyl)cyclohexanone and/or -cyclohexenone. The amines were characterized by converting into the \underline{N} -acetyl derivatives, which were separable by chromatography on silica gel. The structures of the new compounds were established on the basis of 1H NMR spectroscopy. The present procedure has been applicable for chemical degradation of the several protected derivatives (2 - 4) of 1, providing the appropriately protected synthons directly.

CH₂OBn

$$\begin{array}{c} CH_2OR^1 & OR^1 \\ OR^1 & OR^2 \\ OR^1 & OR^2 \end{array}$$

ÇH₂OR²

ÇH₂OR²

Treatment of validoxylamine A octaacetate¹⁾ (2) with 3 molar equivalent of NBS in aqueous 80% DMF at ambient temperature for 2 d afforded, after chromatography on silica gel, a 45% yield of $(4\underline{R},5\underline{R})$ -2,4-diacetoxy-5-acetoxy-methylcyclohex-2-en-1-one⁸⁾ (16), $[\alpha]_D^{23}$ +96° (c 1.3, chloroform); ¹H NMR (CDCl₃) δ = 6.47 (1 H, d, \underline{J} = 2.9 Hz, H-3); IR (CHCl₃) 1700 cm⁻¹ (C=0), which was probably obtained by β -elimination of the initially formed tetraacetate (13) in situ or during separation on silica gel. The slower-moving components were acetylated with acetic anhydride in pyridine at ambient temperature to give penta- $\underline{N},\underline{O}$ -acetyl-(+)-valienamine⁹⁾ (6, 14%). On the other hand, validoxylamine A (1) readily reacted with 1.5 molar equivalent of NBS in water (or aqueous DMF) for 4 h. The reaction mixture was passed through a column of Amberlite CG-50 (NH₄⁺) resin and the effluent was concentrated and the residue was acetylated to give a 23% yield of 16. Then the basic compounds were recovered by elution of the column with aqueous ammonia and were acetylated to afford 6 (9.2%) and penta- $\underline{N},\underline{O}$ -acetyl-(+)-validamine¹⁰⁾ (9, 17%).

In order to prepare the protected derivatives of 5, 8, and trihydroxy-(hydroxymethyl)cyclohexanone, the per- $\underline{0}$ -benzyl ether (3), $\left[\alpha\right]_{D}^{22}$ +63° (c 1.0, chloroform), and the hexa- $\underline{0}$ -benzyl-4,7- $\underline{0}$ -benzylidene derivative¹⁾ (4) were subjected to the similar conditions. On treatment with 3 molar equivalent of NBS in aqueous 80% DMF at ambient temperature for 3 d, compound 3 afforded the cyclohexenone (12, 11%), $\left[\alpha\right]_{D}^{22}$ -12° (c 0.36, chloroform); ¹H NMR (CDCl₃) δ = 4.07 (1 H, d, \underline{J} = 9.8 Hz, H-6), 6.21 (1 H, s, H-2); IR (CHCl₃) 1680 cm⁻¹ (C=O), and the cyclohexanone (14, 47%), $[\alpha]_D^{23}$ +50° (c 0.57, chloroform); ¹H NMR (CDCl₃) δ = 4.13 (1 H, d, \underline{J} = 9.5 Hz, H-2); IR (CHCl₃) 1730 cm⁻¹ (C=0). The basic components were acetylated to give the valienamine $derivative^{2}$) (7, 26%) and the validamine derivative (10, 14%), $[\alpha]_D^{23}$ +22° (c 2.9, chloroform). Under moderate conditions (1.5 molar equivalent of NBS, 17 h), compound 4 gave 12 (16%) and the cyclohexanone derivative (15, 40%), $[\alpha]_D^{19}$ +14° (c 1.0, chloroform); ¹H NMR (CDCl₃) δ = 4.09 (1 H, d, \underline{J} = 9.2 Hz, H-2); IR (CHCl₃) 1730 ${\rm cm}^{-1}$ (C=O). Acetylation of the amines afforded 7 (36%) and the validamine derivative (11, 18%), $[\alpha]_D^{22}$ +5° (c 0.4, chloroform). When similar reaction of 4 was conducted in aqueous acetonitrile instead of aqueous DMF, the reaction completed within 1.5 h to give nearly same ratio and yields of the products (7, 11, 12, and 15). On the other hand, in aqueous dimethylsulfoxide, 4 afforded selectively 7 (23%) and 15 (23%), but a half of 4 was recovered

unchanged. Further addition of NBS at this stage gave finally 7 (29%), 11 (17%), 12 (7%), and 15 (17%).

Per-O-benzylated derivatives of 5 and 8 derived from 3, and the 4,7-O-benzylidene derivatives of 8 and 2,3,4-trihydroxy-5-hydroxymethyl-1-cyclohexanone readily obtainable from 4 may be versatile synthons for synthesis of pseudo-mono and oligosaccharides of biological interest.

References

- 1) S. Ogawa, T. Nose, T. Ogawa, T. Toyokuni, Y. Iwasawa, and T. Suami, J. Chem. Soc., Perkin Trans. 1, 1985, 2369.
- 2) S. Ogawa, Y. Miyamoto, and T. Nose, J. Chem. Soc., Perkin Trans. 1, <u>1988</u>, 2675.
- 3) S. Ogawa and Y. Miyamoto, Chem. Lett., 1988, 889; Y. Miyamoto and S. Ogawa, J. Chem. Soc., Perkin Trans. 1, in press.
- 4) S. Ogawa, Y. Iwasawa, T. Toyokuni, and T. Suami, Carbohydr. Res., <u>141</u>, 329; S. Ogawa and H. Sugizaki, ibid., <u>156</u>, 264 (1986).
- 5) S. Ogawa and Y. Shibata, J. Chem. Soc., Chem. Commun., 1988, 605; Y. Shibata and S. Ogawa, Carbohydr. Res., in press.
- 6) S. Horii, T. Iwasa, and Y. Kameda, J. Antibiot., 24, 57 (1971).
- 7) Y. Kameda and S. Horii, J. Chem. Soc., Chem. Commun., 1972, 746.
- 8) The physical data of new compounds 12-16 will be described in detail in a full paper.
- 9) S. Ogawa, Y. Shibata, T. Nose, and T. Suami, Bull. Chem. Soc. Jpn., <u>58</u>, 3387 (1985).
- S. Ogawa, Y. Iwasawa, T. Nose, T. Suami, S. Ohba, M. Ito, and Y. Saito,
 J. Chem. Soc., Perkin Trans. 1, 1985, 903.

(Received January 25, 1989)